
•••••'

;::,ort
nr 5

HYBRIS
- A first step

towards efficient
information resource management

Jesper Lundh & Peter Rosengren

SISU
Swedish Institute for Systems Development

Box 1250, S-164 28 Kista, Sweden

Table of contents:

AB STRA CT I' •••••• I'" I' ••••••••••••••...•I'" I' ••••••••••••••..••••.•••••••••• 1

1 Introduction l ••• 2

1.1 Information Resource Management 3
1.2 HYBRIS today .4

2 HYBRIS - the Application 5

2.1 Overview 5
2.2 Navigation 6
2.3 Query 7
2.4 Result manipulation 10
2.5 The Meta Database 10
2.6 How to create an Information Map 12

3 The graphical query language 13

3.1 Simple queries 14
3.2 Complex queries 14
3.3 Self-references 16
3.4 Subsets and subclasses 17

4 Securi ty 18

5 Perfomance 18

6 Future work and research directions 19

References .1 •••••••••••• II •••••••••••••••••••• , •••••••••••••••••••••••••••••• 20

SISU Rapport nr 5:
HYBRIS ~A first step .. ~

Jesper Lundh & Peter Rosengren
'999

ABSTRACT
HYBRIS is a hypertext-based tool that allows inexperienced compu-
ter users to navigate in and retrieve information from large corpora-
te databases at a conceptuallevel. The information in the databases
is represented in a conceptual model which is called an information
map. It shows important business-oriented concepts and how they
are interrelated. By pointing and clicking directly in the information
map, users can retrieve information from the databases. Constraints
that restrict the information search can be formulated. The graphi-
cal query is then translated to SQL (Structured Query Language)
and sent to the database. The result ofthe SQL-query is brought back
to HYBRIS where the user have different alternatives for manipula-
ting the result.

SISU Rapport nr 5:
HYBRIS· A lirs1step •..

Jesper Lundh & Peter Rosengren
1989

l

SISU Rapport nr 5:
HYBRIS - A lirs! .tep •.•
Jesper Lundh 6: Peter Rosengren
'989

2

1. Introduction
HYBRIS has been developed by the Swedish Institute for Systems
Deuelopment, SISU, in a joint project together with Swedish Tele-
com. The HYBRIS development team consists of three members -
Jesper Lundh, Stefan Paulsson and Peter Rosengren. The project
leader is Björn Nilsson who also provided the original idea for
HYBRIS.

1.1. Information ResourceManagement

Swedish Telecom is a very large and decentralized organization.
During the last decades they have built numerous database systems
and their investments in data are enormous. The problem is that
data is stored in different types of databases - relational, network,
hierarchical or simply flat files - and that the database systems mn
on different kinds of computers - Vax/VM"S,IBM mainframes, Unix-
machines etc. Since it is a decentralized organization, the computer
systems are located at different sites all over Sweden. New systems
are built throughout the organization without the use ofcommon and
standardized concepts, making the situation even worse.

Today nobody has an overview ofall the information available in the
organization. Executives and other decision makers have to make
important decisions based on incomplete information even though
the necessary information is stored somewhere in the corporate
databases. New databases are built \vith large costs for collecting
data which might already have been collected at some other site. This
is a problem shared by most large organizations.

To summarize, there are three major sub-problems: You have to
know that data exists, where it is and how to get it.

lfthe information resource could be managed efficiently and ifusers
and systems developers could easily access all available information,
the benefits would be tremendous. Decision makers could use this
information resource as a foundation when making important stra-
tegic decisions and new systems could be built by reusing existing
information.

To achieve efficient information resource management, one has to
consider three main activities:

• The development of a conceptual model that describes the
business.

• The design of a graphical too l which makes it easy for inexpe-
rienced computer users to navigate in the conceptual model at
a user-oriented level. The tool should contain a uniform grap-
hical query language that allows users to retrieve all available
information, no matter where and how it is stored.

• The third activity is to further develop this tool to make it an
instrument for systems developers when building new informa-
tion systems.

SISU Rapport nr 5:
HYBRIS - A lirsl .tep •••

Jesper Lundh & Peter Rosengren
1989

3

SISU Rapport nr 5:
HYBRIS· A lirst step' ou

Jesper lundh & Peter Rosengren
1989

4

1.2. HYBRIStoday

HYBRIS is a first step towards such a tool. Today HYBRIS functions
as a tool for retrieval ofinformation from relational SQL-databases.
A prototype for splitting SQL-queries in a distributed environment
has been implemented [Franzen88], but major work remains to be
done in this area. HYBRIS has an intergrated support tool for
systems developers that facilitates the construction of information
maps given a database schema. But we are far from an instrument
that supports the construction of new information systems.

Currently, we concentrate on testing and evaluating the capabilities
ofHYBRIS as a graphical query interface for relation al databases in
real world applications. It is important to stress that HYBRIS is not
tailored for Swedish Teleeom. The tool may be used by any large com-
pany that has made a conceptual model oftheir business or portions
oftheir business. As a matter offact, HYBRIS has already been cu-
stomized for a sales support system at Pharmacia Bioteehnology
[ne., a multinational medical producer.

HYBRIS currently runs on a Macintosh with the host database on a
VaxNMS-machine. The graphical interface of HYBRIS has been
developed with HyperCard. The SQL-generator was written in C
using the Unix-tools Lex and Yacc. The code was then ported to
Lightspeed C on the Macintosh.

In the next chapter, we describe the architecture ofHYBRIS and give
a thorough description of how HYBRIS is used. In Chapter 3, we
discuss the graphical query language that is used for information
retrieval and problems that occur when designing a graphical
database query language. In Chapter4, the problems ofsecurity and
performance are discussed. In the last chapter we outline some
directions for our future work on HYBRIS.

2. HYBRIS - the Application
The main purpose of HYBRIS today is to allow the same expressive-
ness as SQL, but to avoid the need for prior knowledge about the
underlying database, its structure and its contents. It is also a main
purpose to free the user from the lexical and syntactic considerations
that makes SQL, let be powerful, a non-trivial query-language even
to the experienced user.

2.1. Overview

HYBRIS uses an information map to display the structure of the
information. The information map is in fact a binary Entity-Rela-
tionship data model, but it needs not to correspond one-to-one to the
underlying database. On the contrary, we strongly argue that the
data model should represent the business that the database supports
and not the database structure itself. The binary data model in
HYBRIS will hereafter be referred to as the Information Map (IM).
HYBRIS runs on a Macintosh to access data on a hast camputer, such
as a VAX. The user defines a query using the graphical interface in
HYBRIS. The query is then translated to the database query lang-
uage SQL. When the user wants data from the database, he simply
sends the SQL-query to the DBMS on the hast computerwhere it will
be executed. Once the execution ofthe query has been completed, the
user may transfer the result to his personal work station for manipu-
lation. This is of cours e optional since the result might be too large
to fit into the free space on the personal workstations secondary
storage.

The query process is totally transparent to the user. He simply
defines a query and sends it to the database. The translation to SQL,
the database access, and the communication link is hidden from the
userto allow a coherentinterface. Thus, the communication link, the
operating. system and the relation al DBMS may vary from one
environment to another.

SISU Rapport nr s:
HYBRIS· A lirst step.u

Jesper lundh & Peter Rosengren
1969

5

2.2. Navigation

SISU Hoppor! nr 5:
HYBRIS - A lirst step no

Jesper lundh & Peter Rosengren
1989

6

In HYBRIS the user navigates in the IM in order to find out what he
wants to query about. Several tools have been created to facilitate
database queries, but the largest problem - the understanding and
definition of information needs - remains unsolved. You cannot
retrieve information unless you are aware of its existence.

During navigation the user investigates entities, their attributes
and relations between entities. He has immediate access to the Meta
Database which contains textual descriptions of entities, attributes,
data types, value domains and relations. The navigation is not
limited to the IM. Once inside the Meta Database, the navigation
may continue along the hypertext links that are defined. As an
example, if the user is inspecting the description of the entity
Contract, he can read that"a Contract concerns a Service". By simply
clicking on the word Service, the user can read the description of the
entity Service.

The ultimate goal of the navigation is to give the user a "feeling" for
the information, and to give a good understanding ofthe structure
of the information he will eventually query. This increases the
possibility for subsequent queries to be correctly defined.

The IM may be arbitrarily large, or at least so large it will not fit on
the screen. Therefore it is necessary to be able to view the IM at
different levels of detaiJ. In HYBRIS, two levels of detail are defined:

• the detailleveI

• the overview level

Fig 1. The mapping between the detail and the overview level. The
different overuiew maps consist of - possibly overlapping - subgraphs of
the graph representing the entire IM. Note that Entity B can be found on
both overview maps.

On the detaillevel, the user focuses on one entity at a time with its
outgoing relations and the associated adjacent entities. By clicking
on an adjacententity, the focus will change to thatentity. In this way,
the user can navigate through the IMjust by clicking. An example of
the detailed level can be found in Figure 7.

On the overview level, a number of overview maps are defined. They
are groups of entities that are conceptually clustered. An overview
map is in fact a sub-graph of the whole IM. Overview maps may
overlap and it is desirable that each entity is to be found on at least
one overview map, see Figure 1.An example ofthe overview level can
be found in Figure 2.

2.3. Query

Once the user has found out his information needs, he is ready to
define a query that will hopefully fulfil them. The query is defined in
the same IM where the navigation was performed. Although it seems
natural to first navigate and then query, this is just a recommenda-
tion. During query definition, the user may want to check same
definitions before continuing the query. In HYBRIS, it is possible to
do these things in arbitrary order.

A query consists of selecting a number of entities, linking them
together and for each entity selecting output attributes and formu-
late the desired constraints. The process of defining a query in
HYBRIS can be viewed as a process of defining an output set. By
painting and clicking and defining constraints the user defines
exactly what properties the elements in the output set should have.
This has a strong resemblance to Query By Example [Zloof75].

To formulate the query: "Give me the names and addresses of all the
customers that are using telex", the user has to perform the following
steps:

• Re has to navigate in the IM in order to understand that telex
is the name of a Service, and that customers are related to
services in two different ways; via the entity Usage and via the
entity Contract, see Figure 2. Re now has to decide wether he
is interested in customers who have actually used the telex
service or customers who have a contract concerning telex. In
this case we assume the latter.

• Re has to select the entities Customer, Contract and Service,
and the connecting relations.

• Re has to select the output attributes, i.e First_name, Surname
and Address of Customer. see Figure 3.

• Re has to formula te a constraint for Service, i.e Name = 'Telex',
see Figure 4.

Nate that it is possible for the system designer to define value
SISU Rapport nr 5:

HYBRIS· A fi"tstep ...
Jesper lundh & Peter Ro,engren

1989

7

~
C Service...Emplovee)

domains for data types. If the attribute Name of the entity Service
was defined as having the data type Service_name, a list of the
different service names would be available to the user. This reduces
the possibility of faulty searches due to rnisspelled constants in
expressions. The user may either choose from a menu or type by hand
as usual. In the latter case, the input will be matched with the value
domain to assure correctness.

l2. File TeHt Nauigate Query

Cuslomer map

Query name: Untitled_1 CPIIl
Learn Help

Fig 2. A query definition in the IM. The selected entities are highlighted
and the selected relations are marked with a black dot.

Cuslomer
Constraints

Oalpat
D Customer...id
[!] firSI...l1ame
[!] Surname

Address

D
D
I

Attribates

Min
Max

()

[;]

JlD

OR
HOT

G
I

SISU Rapport nr s:
HYBRIS· Alirs! .tep ..•
Jesper Lundh ar: Pe1er RO$engren
1989

8

Fig 3. The output attributes for the entity Customer. The selected
attributes are marked with a black dot in their respective output box.

Service
Constrain t:s
Name = 'Telex'

OlItplIt

D
D Type
O
D
O
D
D
I

. I i

> not equaJ
< less than
> greater than
<= less than or eQual
>= greater than or eQual

Min
Max

[;]

llD

OR
HOT

G
I

Fig 4, The constraints for the entity Service. It is easy to define more
complex constraints for an entity by combining expressions with the
boolean operators,

The definition of the query is now complete. Whenever the user
thinks it is appropriate, the query can be sent to the database for
execution. All queries may be stored for later use, and it is also
possihle to load queries into the IM for graphical editing.

The SQL-code that is generated from the graphical query is available
for inspection by the user, hut we chose to make this optional since
the SQL-code is rather cryptic to most people. Although, a look at the
SQL-code that is generated from the example query might shed some
light on the advantages with the HYBRIS approach as weIl as some
of the functionality of the SQL-generator.

SELECT Customer.First_name, Customer.Surname,
Customer.Address
FROM CUST_TAB Customer, CONT_TAB Contract, SERV TAB
Service
WHERE Service.SNAME = 'Telex'
AND EXISTS

(SELECT *
FROM CDST CONT
WHERE Customer.CDST ID = CDST CONT.CDST ID- -AND CDST_CONT.CONT_ID = Contract.CONT_ID)

AND Contract. CTYPE = Service. SNAME ;

Fig 5. The SQL·code generated by the SQL-generator for the example
query.

There are a number ofthings worth mentioning about the SQL-code:

• The Customer, the Contract and the Service entities are map-
ped onto tables in the database with the names CUST_TAB,
CONT_TAB and SERV _TAB respectively.

SISU R.oppOrlnr~:
HYBRIS - A firsl.lep •••

Je$per Lundh & Peter Rosengren
1989

9

• The attribute Narne in the entity Service is mapped anta the
column SNAME in the table SERV _TAB.

• Since we assume that the relation between Cutsomer and
Contract is a many-to-many relation, it is represented in the
physicaldatabase as a separate table. This table, CUST_CONT,
that connects the CUST_TAB and the CONT_TAB tables is
hidden in the IM.

• Thejoin between the CONT_TAB and the SERV _TAB table s is
defined by the logical expression Contraet. CTYPE =
Service.SNAME, where SNAi'vfE is the primary key and CTY-
PE is the foreign key.

These mappings are stored in the Meta Database, see Section 2.5,
and are used each time SQL-code is generated. Thus, the implemen-
tatianal details and the physical storage of the database are hidden
to the HYBRIS user.

2.4. Resultmanipulation

SISU Rapport nr 5;
HYBRIS· A firststep ..•
Jesper Lundh & Peter Rosengren
1989

10

When the query has been executed on the hast camputer, the
resulting file can be transferred back to the Macintosh. This file is a
flat tabular text file and it is probably desirable to manipulate this
file in order to create reports or graphics to be presented.

Since HYBRIS is implemented in HyperCard, any Macintosh appli-
cation can be started from within HYBRIS. In the current version of
HYBRIS there are links to allow the user to open result files with a
spreadsheet and a word processor. There is no limit to the number
of different applications that can be integrated with HYBRIS.

2.5. TheMeta Database

One user is called the HYBRIS SA (Systems Administrator). The
HYBRIS SA is responsible for the distribution ofnew versions ofthe
HYBRIS system to all the personal workstations that run it. New
versions of the system is created whenever the Meta Database is
updated.

The Meta Database (MDB) is the most fundamental part of HYBRIS.
It is supported by the HYBRISSA and a local copy is stored on each
machine that runs HYBRIS. The MDB contains information about
the following:

• The structure of the IM
(Le. entities, attributes, data types, value domains, relations
and their respective textual descriptions)

• The structure of the underlying databas e
(Le tables, columns, data types and their physicallocation)

• The mapping between the IM and the database
(i.e. how entities, attributes and relations in the IM correspond
to tables and columns in the database)

The MDB is defined in terms ofa relation al da tabase in orderto make
it easy to update. The HYBRIS SA is the only user that may update
the MDB. However, the local HYBRIS systems do not contain links
to the original MDB, just copies ofit. It is worth mentioning that a
local MDB copy is not represented as areiationai database, but as a
totally integrated part ofthat specific HYBRIS system (i.e as a Hy-
perCard stack).

Meta Oatabase (MOS)

~
,--~.~

HYBRIS SA

\

EJ

AutomaUc gcncraUon ,
of HYBRJS Stackware

6Lr ~~ Local personal-== ~_= work stations~ ~ I 'p-jjj

~ ~ eJ HYBRIS Stackware

\ f
(v.ith loeal MOS copicsJI Cnmmunkation link

~
! II I Rclational DBMS

i~

Fig 6. The HYBRIS SA generates new versions of the HYBRIS
Stackware that can be distributed to all the machines that run HYBRIS.

There are three major reasons for having a local MDB copy in each
HYBRIS system:

• It eliminates the need for arelationai DBMS on each personal
workstation.

• It supports hypertext navigation In the MDB from within
HYBRIS.

• It drastically increases the performance of the MDB access.

The HYBRIS system is automatically generated from the original
MDB. This process is invoked by the HYBRIS SA. The generating
process converts the contents of the original MDB's relational DB to
a HyperCard stack with the appropriate hypertext hnks.

SISU Rapport nr 5:
HYBRIS • A ti~l .tep .n

Jesper lllndn & Peter Rosengren
1989

11

SISU Roppor1nr~:
HYBRIS. A lirsl 51.p.u
Jesper Lundh & Peter Ro~engren
1989

12

2.6. How to create an Information Map

The process of defining an Information Map is in fact the process of
defining the contents of the MDB. There are two major approaches
to perform this process:

• Conceptual-to-physical, i.e begin with a conceptual modelover
the information and then create the mapping to the physical
database. The conceptual model will then be the IM.

• Physical-to-conceptual, i.e begin with the physical database
structure and refine it step by step to create the final IM.

Today, HYBRIS supports the latter approach since it is more
straight-forward and considerably easier to implement. The major
drawback is that, with this approach, it is difficult to free the IM to
a high degree from the structure of the database.

In the future, when a HYBRIS system will be ab le to cover a number
of distributed databases, there will be an increased need for a
"hybrid" approach that combines the two approaches mentioned
here.

~nneCl1on)

Uses

3. The graphic:al query
language

The design of a graphical query language is a compromise between
"easy-to-learn" and expressiveness. One of our design goals was to
avoid implementing merely a graphical dialect of SQL, but still to
keep as much expressiveness in the language constructs as possible.
Another design goal was to have the query interface totally integra-
ted with the Information Map. An alternative solution would have
been to allow the user to express his query interactively by ehoosing
entities from a dictionary and put them on a "workbeneh". We did not
choose the latter solution because we think it is necessary that the
user always have a view over the information structure. This will
provide him a lot of support when formulating his query.

1.2. file TeHt Ni'llJigate Ouery

(
(LoCOI net)

Termlnolyoint) -
\ /
\ Is_ParT_Of

Connects

(Motfunction) \

~nerates

Station

Ouery name: Untitled_l
C1JGJ
Leern Help

Fig 7 The IM at the detaillevel. Note that the relations are readable at
this level.

SISU Rapport nr 5:
HYBRIS - A ti~t step •••

Je~per Lundh & Peter Rosengren
1989

13

SISU Rappen nr~:
HYBRIS· A fi •.• tstep.n
Jesper Lundh & Peter Rosengren
1989

14

3.1. Simple queries

It is rather straightforward to hand le flat queries where the user
defines simple restrictions on entity sets and possibly links between
such sets. Two·examples of queries that may be defined in Figure 7
are:

• "Give me all Stations that are part of Local net L".

• "Give me all Malfunctions that have beengenerated by Station
X".

The proced ure for defining this kind of queries has been described in
Section 2.3.

3.2. Complexquerles

In real world applications users often have much more complex
information needs than can be expressed in a flat query. Two typical
examples are:

• "Give me all Stations that have only generated Malfunctions of
type X".

• "Give me all Stations that use the same Connections as station
A".

Consider the first example: at first this seems to be a simple query.
Why not sele et Station and Malfunction and set the constraint type
=Xin Malfunction? However, this will give us all Stations thathave
generated some Malfunction oftype X. This is not what we seek. We
want all Stations that have only generated Malfunctions of typ e X,
no matter how many Malfunctions it has generated.

Queries like the two above are difficult to formulate in SQL. It often
involves the use ofnestedNOT EX/ST statements, something most
users have great problems to understand. Instead ofintroducing the
quantifiers ALL and EXIST in the graphicallanguage, our solution
is to use simple set theory. The set predieates equal, superset, subset,
overlaps and disjoint have been implemented in HYBRIS and can be
used when formulating constraints. These set constraints are tran-
slated to appropriate SQL-code by the SQL-generator.

The first query above could be paraphrased as "Give me all Stations
whose set of generated Malfunctions is a subset of the set of all
Malfunctions of type X". When working with HYBRIS the user
defines this query in two steps:

• First he constructs the setAICMalfunctions_Of_Type_X. This
is done in exactly the same way as when formulating a query.
First he selects Malfunctions and adds the constraint type = X.
Then he ehooses Define set instead ofDefine query from the
menu. This set is now defined and can be used anywhere in
HYBRIS.

• Then he selects Station. When he opens Station he will find an
attribute called MalfunctionsO which represents the set of
Malfunctions that are generated by a given Station. The curly
brackets are used to indicate that this is a set of entities. Now
he chooses Subset (actually, a graphical symbol that repre-
sents subset) from the pop-up menu. Doing so will show a list of
all available sets. Only those sets that are compatible with this
attribute (i.e. sets of Malfunctions) are shown in the list. After
making his choice from the list he is ready to send the query.

The SQL-query generated by the SQL-generator is shown below:

SELECT Station. ID
FROM STAT TAS Station
WHERE NOT EXISTS

(SELECT *
FROM MALFUNC TAB Malfunction
WHERE NOT Malfunction.TYPE 'X'
AND EXISTS

(SELECT *
FROM ERR REP TAS
WHERE Station. ID = ERR REP TAB. SNR
AND ERR REP TAB.NAME = Malfunction.NAME));

Fig 8 Complex SQL-code generated by the SQL-generator.

Even though the concept ofuser-defined sets adds a lot of expressi-
veness to the graphical language, our experience is that most
inexperienced computer users have problems understanding the
idea ofusing sets. This is because they are not trained in thinking in
set-oriented terms.* Therefore we have introduced two levels in
HYBRIS - one for normal users and one for advanced users. At the
normalleveI the user can only formulate flat queries. He cannot
define his own sets and he does not see any set-attributes. In the
advanced mode sets can be defined and used when formulating
queries. Sets can also be defined in terms of other sets making it
possible to construct arbitrarily complex sets.

It is our intention that the users should start using HYBRIS at a
normal level without having any knowledge of the set concept.
Eventually they will find out that they have information needs that
cannot be satisfied at this leve!. That will hopefully give them an
understanding of sets as something that can help them formulate
their information needs instead of something abstract and mathe-
matical.

* However, with same trai-
ning, set thcory is show n to
be an abstraction suitable for
non-mathematicians. [Kat-
zefl88J presents an empirical
study that compares diffe-
rent user models for efficient
use of database query
languages - no model, a table
model and a set model. The
results showed that users
that worked with the set
model made fewer mistakes
formulating queries than the
users that worked with the
other modeis.

SISU Rapport nr 5:
HYBRIS - fl,. lirsl step ...

Jesper Lundh & Peter Rosengren
1989

15

3.3. Self-references

One very important conceptual modelling construct is the hierarchy.
Examples of that are Part that consists of other Parts or EmDloyee
that has a manager who is another EmDloyee. Hierarchies are
expressed in a conceptual model by using self-referencing arrows,
see figure below.

Part Employee

Fig 9 Self-reference is used to represent hierarchies.

Information structures like this arises in all real world applications.
Unfortunately it is very difficult to deal with them in a graphical
query language if you still want to keep the language simple with few
language constructs.

There are two problems:

• How to express queries concerning self-referencing relations-
hips graphically

• Standard SQL does not support recursion

How do the user formulate a query like "Give me all EmDloyees in the
netwark DeDartment that earn mare than their managers"? Here the
concept Emplovee is used in two different roles: First we are talking
about Employee as someone working in the network Department.
Then we are talking about Emolovee as someone being a manager to
the first one. A possible solution is that when the user clicks on the
relation has_manager he will get a duplicate ofthe entity Employee,
as is shown in Figure 10. Then he can formulate constraints separa-
tely for the two different roles of Employee.

:e:= works in(Department -. ,
works_m

~ EmPlOyee~

has manager

i EmPlOyeeY-

SISU Rappon nr 5:
HYBRIS· A tirst step no

Jesper lund h & Peter Rosengren
1989

16

Ffg 10 Duplication may be used to represent different roles for an
entity. In this case the entity Employee' represents the manager. Nate
that it is not obvious that the relation works_in should be duplicated.
It depends upon the reality which the model attempts to describe.

We feel that this solution is somewhat unsatisfactory because it
might give the user the feeling that the information structure has
changed in some way. There might also be a problem understanding
the different roles of the entity Emplovee. Our future work will

include the investigation of ways to express recursive relationships
in a more natural way.

The fact that standard SQL does not support recursion makes it
impossible to formulate queries like "How many Parts does Part X
eons ist of?". In most applications this is solved by using a program-
ming language that has an interface to the database management
system. Of cours e it would be possible to let HYBRIS generate this
code, but this would introduce a lot of other problems since different
SQL-databases supports different program ming languages.

3.4. $ubsels and subclasses

One unsolved problem is how to handle subsets of entity sets. At
certain times we want to reason about a subset of entities that are
related to a certain entity. We might want to know the Stations that
have generated more than 50 telex Malfunctions. Today the usel'
only have access to a certain station's malfunctions and can only
formulate constraints concerning the cardinality of a station 's mal-
functions, not subsets of that entity set.

An ide a which is evaluated at the moment is to incorporate subsets
in the Information Map once they have been defined. They can then
be treated as any other entity set in the Information Map. This would
also make it possible for a usel' to tailor his own environment.

A powerful modelling technique often used in conceptual modelling
is to use abstraction hierarchies such as isa-relations which can help
enhance the clarity of the model. This is not supported in the current
version of HYBRIS.

SISU Rapport nr 5:
HYBRIS· A firstslep ••.

Jesper Lundh &. Peter A05engren
1989

17

SISU Rapport nr s:
HYBRIS -" fi~l .tep ...
Jesper Lundh & Peter Rosengren
1989

18

4. Security
HYBRIS solves many problems but introduces some new. In all real
world database environments security and integrity is ofuttermost
importance. Since HYBRIS is only used for information retrieval, it
does not create any new problems conceming data integrity.

However, it adds some aspects to data security. In a large organiza-
tion it would be unwise if everybody had access to all available
information. There are two ways you can deal with this: at the
conceptual level or at the data level. To handle security at the
conceptuallevel means that users see only the part ofthe Informa-
tion Map they are authorized to query about. In this way, users will
not have knowledge about all existing information.

On the other hand, ifsecurity is handled at the data level, the users
would see the whole Information Map. If they try to retrieve infor-
mation they are not authorized to, the system will notify them about
this and fail to return a result. Using this approach, a user may
understand that there is data - not available to him - that could
support his daily work. This might result in a change of access
privileges.

The approach depends on the organization and its security policy.
Both of them can be implemented in HYBRIS. The data level
approach would of course be easier since most organizations already
have security systems installed in their DBMS.

s. Performance
Another problem that arises in large databases is response time.
With HYBRIS we have made it easy for naive users to send complex
queries to databas e management systems. Queries that may involve
very complex search criteria which might download the database
manager for hours in the worst case. This has not been a big problem
in the past since naive users have been unable to spontaneously
formulate complex queries in SQL. To solve this problem it will be
necessary to give the user a search cost estimation of a given query
based on the query itself and the actual size ofthe database tables.

6. Future work and
research directions

As indicated earlier, our future work will be to further develop
HYBRIS towards a tool that fully supports information resource
management in large organizations. This will include full support for
systems developers to build information maps from a database
schema Also, it will be afuture goal to make HYBRIS work in a
distributed heterogeneous database environment.

Furthermore, we will try to make our query language more "graphi-
ca l" than today, especially when it comes to formulating constraints.
Sometimes the user is not interested in entities with a specific
propert y but wants to ask something more fuzzy like "Emvloyees that
are well paid" or "Networks with many Stations". We will try to use
graphical symbols to express fuzzy quantities. Of cours e, the system
designer has to define what is actually meant by "ma ny Stations" or
"well paid Emvlovees". However, this information can easily be
stored in the MDB.

An obvious extension of the user interface is to connect HYBRIS to
a videodisc. Then images, video sequences and sounds could be used
to illustrate important concepts in a better way than today. Then
HYBRIS could also be used as a tool for teaching new employees how
the company is organized and the underlying business ideas.

As was discussed in Chapter 4, several problems arises when users
want to express more complex queries in the Information Map. This
is an instance of a more general problem, namely how to express
predicate logical statements in a graphical model. An important
r~search issue would be to develop a general theory for expressing
predicate logical statements graphically.

HYBRIS can be viewed as a hypertext interface that has been put on
an existing relational database. Another interesting research topic
would be to investigate if it is possible to work in the opposite
direction. That is to first define a hypertext system at a conceptual
level and then automatically create areiationai database schema
that supports the system.

SISU Rapport nr 5:
HYBRIS· A li",t step ...

JC:!Iper lundh & Petcr Rosengren
,gag

19

SISU Rapport nr~:
HYBRIS - A ti~t step '"
Jesper Lundh &. Peter Rosengren
'9S9

20

References

[Arnborg80] Stefan Arnborg: "A simple Ouery Language based on Set Alge-
bra", Department Of Numerical Analysis and Computing Scien-
ce, Royal Institute of Technology, S-10044Stockholm, Sweden,
1980.

[Chen76] P. P. Chen: 'The EnUty-Relationship Approach - Toward a
unified View of Data", ACM TODS, vol 1, no 1, Mar 1976.

[Czejd085] Bogdan Czejdo, David W. Embley: "An algebra for an Entity-
Relationship Model and its application to graphical query pro-
cessing", Proc. of the International Conference on Foundations
of Data Organization, Kyoto, May 1985.

[Date86] C. J. Date: "An introduction to Database Systems", Fourth
edition, Addison Wesley, 1986.

[Estier88] Thibault Estier, Gilles Falquet: "OFE: A Ouery Interface using a
Hypertext Approach based on Semantic Contexts", Centre Uni-
versitaire d'lnformatique University of Geneva 12, rue du Lac
CH-1207Geneve, Switzerland.

[Fogg84] Dennis Fogg: "Lessons from 'Living in a database' Graphical
Ouery Interface", Proc. ACM SIGMOD84 International Conferen-
ce on Management of data, Boston 1984.

[Franzen88] Peter Franzen: "Frågehantering i ett distribuerat databassystem
med centraliserad kontroll", SISU Internai Paper, only available
in swedish.

[Gars88] Pankaj K. Gars: "Abstractions mechanisms in hypertext", Com-
munications of the ACM, vol 31, no 7, July 88.

[Halasz88] Frank G. Halasz: "Reflections on NoteCards: Seven /ssues for
the next generation of hypermedia systems", Communications
of the ACM, vol 31, no 7, July 88.

[Kanga89] Hannu Kangassalo: "COMIC: A System for conceptual mode/-
ling and information construction", CASE89Conference in Kista,
Sweden, May 1989

[KatzeH88] Cecilia KatzeH: "The effect of different conceptua/ mode/s upon
reasoning in a database query writing task", Department of
Psychology, University of Stockholm, S-106 91, Sweden, 1988.

[2100f75] M. M. Zloof: "Ouery by Example", 1975 National Computer Con-
ference, May 1975

	page1
	titles
	••••• '
	;::,
	ort
	nr 5
	HYBRIS
	SISU

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7
	image8

	page2
	titles
	Table of contents:

	page3
	titles
	ABSTRACT
	l

	page4
	titles
	2
	1. Introduction

	page5
	titles
	1.1. Information Resource Management
	3

	page6
	titles
	4
	1.2. HYBRIS today

	page7
	titles
	2. HYBRIS - the Application
	2.1. Overview
	5

	page8
	titles
	2.2.
	Navigation
	6

	images
	image1

	page9
	titles
	2.3.
	Query
	7

	page10
	titles
	CPIIl
	D
	I
	G
	I
	8

	images
	image1
	image2
	image3
	image4
	image5

	page11
	titles
	O
	D
	O
	D
	D
	I
	G
	I
	9

	images
	image1
	image2
	image3
	image4

	page12
	titles
	2.4.
	Result manipulation
	10
	2.5. The Meta Database

	page13
	titles
	,--
	\
	i~
	11

	images
	image1

	page14
	titles
	12
	2.6. How to create an Information Map

	page15
	titles
	C1JGJ
	13

	images
	image1
	image2

	page16
	titles
	14
	3.1. Simple queries
	3.2. Complex querles

	page17
	titles
	15

	page18
	titles
	3.3. Self-references
	16

	images
	image1
	image2

	page19
	titles
	3.4.
	$ubsels and subclasses
	17

	page20
	titles
	18
	4. Security
	s. Performance

	page21
	titles
	19

	page22
	titles
	20
	References

